Fundamental Algorithms

Chapter 2: Sorting

Jan Křetínský

Winter 2017/18

Part I

Simple Sorts

The Sorting Problem

Definition

Sorting is required to order a given sequence of elements, or more precisely:

Input : a sequence of n elements $a_{1}, a_{2}, \ldots, a_{n}$
Output : a permutation (reordering) $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}$ of the input sequence, such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$.

- we will assume the elements $a_{1}, a_{2}, \ldots, a_{n}$ to be integers (or any element/data type on which a total order \leq is defined)
- a sorting algorithm may output the permuted data or also the permuted set of indices

Insertion Sort

Idea: sorting by inserting

- successively generate ordered sequences of the first j numbers: $j=1, j=2, \ldots, j=n$
- in each step, $j \rightarrow j+1$, one additional integer has to be inserted into an already ordered sequence

Data Structures:

- an array $\mathrm{A}[1 . . \mathrm{n}]$ that contains the sequence a_{1} (in $\left.\mathrm{A}[1]\right), \ldots, a_{n}$ (in $\mathrm{A}[\mathrm{n}]$).
- numbers are sorted in place:
 output sequence will be stored in A itself (hence, content of A is changed)

Insertion Sort - Implementation

```
InsertionSort(A:Array[1..n]) {
    for j from 2 to n {
    // insert A[j] into sequence A[1..j-1]
    key := A[j];
    i := j-1; // initialize i for while loop
    while i>=1 and A[i]> key {
        A[i+1]:= A[i];
        i := i-1;
    }
    A[i+1]:= key;
    }
}
```


Correctness of InsertionSort

Loop invariant:
Before each iteration of the for-loop, the subarray A[1..j-1] consists of all elements originally in $\mathrm{A}[1 . . \mathrm{j}-1]$, but in sorted order.

Initialization:

- loops starts with $\mathrm{j}=2$; hence, $A[1 . . j-1]$ consists of the element $A[1]$ only
- A[1] contains only one element, $A[1]$, and is therefore sorted.

Correctness of InsertionSort

Loop invariant:

Before each iteration of the for-loop, the subarray A[1..j-1] consists of all elements originally in A[1..j-1], but in sorted order.

Maintenance:

- assume that the while loop works correctly (or prove this using an additional loop invariant):
- after the while loop, i contains the largest index for which $\mathrm{A}[\mathrm{i}]$ is smaller than the key
- A[i+2..j] contains the (sorted) elements previously stored in $A[i+1 . . j-1]$; also: $A[i+1]$ and all elements in $A[i+2 . . j]$ are \geq key
- the key value, $A[j]$, is thus correctly inserted as element $A[i+1]$ (overwrites the duplicate value $A[i+1]$)
- after execution of the loop body, $A[1 . . j]$ is sorted
- thus, before the next iteration (j:=j+1), $A[1 . . j-1]$ is sorted

Correctness of InsertionSort

Loop invariant:
Before each iteration of the for-loop, the subarray A[1..j-1] consists of all elements originally in $\mathrm{A}[1 . . \mathrm{j}-1]$, but in sorted order.

Termination:

- The for-loop terminates when j exceeds n (i.e., $\mathrm{j}=\mathrm{n}+1$)
- Thus, at termination, $A[1 . .(n+1)-1]=A[1 . . n]$ is sorted and contains all original elements

Insertion Sort - Number of Comparisons

```
InsertionSort(A:Array[1..n]) {
```

for j from 2 to $\mathrm{n}\{$
key := A[j];
i := j-1;
while $\mathrm{i}>=1$ and $A[\mathrm{i}]>$ key $\{$
$A[i+1]:=A[i] ;$
$\mathrm{i}:=\mathrm{i}-1$;
\}
$\mathrm{A}[\mathrm{i}+1]$:= key;
\}
\}

Insertion Sort - Number of Comparisons (2)

- counted number of comparisons: $T_{\text {IS }}=\sum_{j=2}^{n} t_{j}$
- where t_{j} is the number of iterations of the while loop (which is, of course, unknown)
- good estimate for the run time, if the comparison is the most expensive operation (note: replace " $\mathrm{i}>=1$ " by for loop)

Analysis

- what is the "best case"?
- what is the "worst case"?

Insertion Sort - Number of Comparisons (2)

- counted number of comparisons: $T_{\text {IS }}=\sum_{j=2}^{n} t_{j}$
- where t_{j} is the number of iterations of the while loop (which is, of course, unknown)
- good estimate for the run time, if the comparison is the most expensive operation (note: replace " $i>=1$ " by for loop)

Analysis of the "best case":

- in the best case, $t_{j}=1$ for all j
- happens only, if $\mathrm{A}[1 . . \mathrm{n}]$ is already sorted

$$
\Rightarrow T_{\mathrm{IS}}(n)=\sum_{j=2}^{n} 1=n-1 \in \Theta(n)
$$

Insertion Sort - Number of Comparisons (2)

- counted number of comparisons: $T_{\text {IS }}=\sum_{j=2}^{n} t_{j}$
- where t_{j} is the number of iterations of the while loop (which is, of course, unknown)
- good estimate for the run time, if the comparison is the most expensive operation (note: replace " $\mathrm{i}>=1$ " by for loop)

Analysis of the "worst case":

- in the worst case, $t_{j}=j-1$ for all j
- happens, if $A[1 . . n]$ is already sorted in opposite order

$$
\Rightarrow T_{\text {IS }}(n)=\sum_{j=2}^{n}(j-1)=\frac{1}{2} n(n-1) \in \Theta\left(n^{2}\right)
$$

Insertion Sort - Number of Comparisons (2)

- counted number of comparisons: $T_{\text {IS }}=\sum_{j=2}^{n} t_{j}$
- where t_{j} is the number of iterations of the while loop (which is, of course, unknown)
- good estimate for the run time, if the comparison is the most expensive operation (note: replace " $i>=1$ " by for loop)

Analysis of the "average case":

- best case analysis: $T_{\text {IS }}(n) \in \Theta(n)$
- worst case analysis: $T_{\text {IS }}(n) \in \Theta\left(n^{2}\right)$
\Rightarrow What will be the "typical" (average, expected) case?

Running Time and Complexity

"Run(ning)Time"

- the notation $T(n)$ suggest a "time", such as run(ning) time of an algorithm, which depends on the input (size) n
- in practice: we need a precise model how long each operation of our programmes takes \rightarrow very difficult on real hardware!
- we will therefore determine the number of operations that determine the run time, such as:
- number of comparisons (sorting, e.g.)
- number of arithmetic operations (Fibonacci, e.g.)
- number of memory accesses

Running Time and Complexity

"Run(ning)Time"

- the notation $T(n)$ suggest a "time", such as run(ning) time of an algorithm, which depends on the input (size) n
- in practice: we need a precise model how long each operation of our programmes takes \rightarrow very difficult on real hardware!
- we will therefore determine the number of operations that determine the run time, such as:
- number of comparisons (sorting, e.g.)
- number of arithmetic operations (Fibonacci, e.g.)
- number of memory accesses
"Complexity"
- characterises how the run time depends on the input (size), typically expressed in terms of the Θ-notation
- "algorithm xyz has linear complexity" \rightarrow run time is $\Theta(n)$

Average Case Complexity

Definition (expected running time)

Let $X(n)$ be the set of all possible input sequences of length n, and let $P: X(n) \rightarrow[0,1]$ be a probability function such that $P(x)$ is the probability that the input sequence is x.
Then, we define

$$
\bar{T}(n)=\sum_{x \in X(n)} P(x) T(x)
$$

as the expected running time of the algorithm.
Comments:

- we require an exact probability distribution (for InsertionSort, we could assume that all possible sequences have the same probability)
- we need to be able to determine $T(x)$ for any sequence x (usually much too laborious to determine)

Average Case Complexity of Insertion Sort

Heuristic estimate:

- we assume that we need $\frac{j}{2}$ steps in every iteration:

$$
\Rightarrow \bar{T}_{\text {IS }}(n) \stackrel{(?)}{\approx} \sum_{j=2}^{n} \frac{j}{2}=\frac{1}{2} \sum_{j=2}^{n} j \in \Theta\left(n^{2}\right)
$$

Average Case Complexity of Insertion Sort

Heuristic estimate:

- we assume that we need $\frac{j}{2}$ steps in every iteration:

$$
\Rightarrow \bar{T}_{\text {IS }}(n) \stackrel{(?)}{\approx} \sum_{j=2}^{n} \frac{j}{2}=\frac{1}{2} \sum_{j=2}^{n} j \in \Theta\left(n^{2}\right)
$$

- note: $\frac{j}{2}$ isn't even an integer ...

Average Case Complexity of Insertion Sort

Heuristic estimate:

- we assume that we need $\frac{j}{2}$ steps in every iteration:

$$
\Rightarrow \bar{T}_{\text {IS }}(n) \stackrel{(?)}{\approx} \sum_{j=2}^{n} \frac{j}{2}=\frac{1}{2} \sum_{j=2}^{n} j \in \Theta\left(n^{2}\right)
$$

- note: $\frac{j}{2}$ isn't even an integer...
- Just considering the number of comparisons of the "average case" can lead to quite wrong results!

$$
\text { in general } E(T(n)) \neq T(" E(n) ")
$$

Bubble Sort

```
BubbleSort(A:Array[1..n]) {
    for i from 1 to n do {
        for j from n downto i+1 do {
        if A[j]<A[j-1]
        then exchange A[j] and A[j-1]
    }
    }
}
```


Basic ideas:

- compare neighboring elements only
- exchange values if they are not in sorted order
- repeat until array is sorted (here: pessimistic loop choice)

Bubble Sort - Homework

Prove correctness of Bubble Sort:

- find invariant for i-loop
- find invariant for j-loop

Number of comparisons in Bubble Sort:

- best/worst/average case?

Part II

Mergesort and Quicksort

Mergesort

Basic Idea: divide and conquer

- Divide the problem into two (or more) subproblems:
\rightarrow split the array into two arrays of equal size
- Conquer the subproblems by solving them recursively: \rightarrow sort both arrays using the sorting algorithm
- Combine the solutions of the subproblems:
\rightarrow merge the two sorted arrays to produce the entire sorted array

Combining Two Sorted Arrays: Merge

```
Merge (L:Array[1..p], R:Array[1..q], A:Array[1..n]) \{
    merge the sorted arrays \(L\) and \(R\) into \(A\) (sorted)
// we presume that \(\mathrm{n}=\mathrm{p}+\mathrm{q}\)
    \(\mathrm{i}:=1\); \(\mathrm{j}:=1\) :
    for k from 1 to n do \(\{\)
        if \(\mathrm{i}>\mathrm{p}\)
            then \(\{A[k]:=R[j] ; j=j+1 ;\}\)
        else if \(\mathrm{j}>\mathrm{q}\)
        then \(\{A[k]:=L[i] ; i:=i+1 ;\}\)
        else if \(L[i]<R[j]\)
        then \(\{A[k]:=L[i] ; i:=i+1 ;\}\)
        else \(\{A[k]:=R[j] ; j:=j+1 ;\}\)
    \(\}\)
\}
```


Correctness and Run Time of Merge

Loop invariant:

Before each cycle of the for loop:

- A has the $\mathrm{k}-1$ smallest elements of L and R already merged, (i.e. in sorted order and at indices $1, \ldots, k-1$);
- L[i] and $R[j]$ are the smallest elements of L and R that have not been copied to A yet
(i.e. L[1..i-1] and R[1..j-1] have been merged to A)

Run time:

$$
T_{\text {Merge }}(n) \in \Theta(n)
$$

- for loop will be executed exactly n times
- each loop contains constant number of commands:
- exactly 1 copy statement
- exactly 1 increment statement
- 1-3 comparisons

MergeSort

```
MergeSort(A:Array[1..n]) {
        if n>1 then {
        m := floor(n/2);
```


create array R[1...n-m]; for i from 1 to $\mathrm{n}-\mathrm{m}$ do $\{\mathrm{R}[\mathrm{i}]:=\mathrm{A}[\mathrm{m}+\mathrm{i}]$; \}

MergeSort(L); MergeSort(R);

Merge(L,R,A);
\}
\}

Number of Comparisons in MergeSort

- Merge performs exactly n element copies on n elements
- Merge performs at most $c \cdot n$ comparisons on n elements
- MergeSort itself does not contain any comparisons between elements; all comparisons done in Merge
\Rightarrow number of element-copy operations for the entire MergeSort algorithms can be specified by a recurrence (includes n copy operations for splitting the arrays):

$$
C_{\mathrm{MS}}(n)= \begin{cases}0 & \text { if } \quad n \leq 1 \\ C_{\mathrm{MS}}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+C_{\mathrm{MS}}\left(n-\left\lfloor\frac{n}{2}\right\rfloor\right)+2 n & \text { if } \quad n \geq 2\end{cases}
$$

\Rightarrow number of comparisons for the entire MergeSort algorithm:

$$
T_{\mathrm{MS}}(n) \leq \begin{cases}0 & \text { if } n \leq 1 \\ T_{\mathrm{MS}}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T_{\mathrm{MS}}\left(n-\left\lfloor\frac{n}{2}\right\rfloor\right)+c n & \text { if } \\ n \geq 2\end{cases}
$$

Number of Comparisons in MergeSort (2)

Assume $n=2^{k}, c$ constant:

$$
\begin{aligned}
T_{\mathrm{MS}}\left(2^{k}\right) & \leq T_{\mathrm{MS}}\left(2^{k-1}\right)+T_{\mathrm{MS}}\left(2^{k-1}\right)+c \cdot 2^{k} \\
& \leq 2 T_{\mathrm{MS}}\left(2^{k-1}\right)+2^{k} \mathrm{C}
\end{aligned}
$$

Number of Comparisons in MergeSort (2)

Assume $n=2^{k}, c$ constant:

Number of Comparisons in MergeSort (2)

Assume $n=2^{k}, c$ constant:

$$
\begin{aligned}
T_{\mathrm{MS}}\left(2^{k}\right) & \leq T_{\mathrm{MS}}\left(2^{k-1}\right)+T_{\mathrm{MS}}\left(2^{k-1}\right)+c \cdot 2^{k} \\
& \leq 2 T_{\mathrm{MS}}\left(2^{k-1}\right)+2^{k} c \\
\leq & 2^{2} T_{\mathrm{MS}}\left(2^{k-2}\right)+2 \cdot 2^{k-1} c+2^{k} c \\
& \leq \ldots \\
\leq & 2^{k} T_{\mathrm{MS}}\left(2^{0}\right)+2^{k-1} \cdot 2^{1} c+\ldots+2^{j} \cdot 2^{k-j} c \\
& +\ldots+2 \cdot 2^{k-1} c+2^{k} c \\
& \sum_{i=1}^{k} 2^{k} c=c k \cdot 2^{k}=c{ }^{2} \log _{2} n \in O(n \log n)
\end{aligned}
$$

Quicksort

Basic Idea: divide and conquer

- Divide the input array A[p..r] into parts A[p..q] and A[q+1 .. r], such that every element in $A[q+1$.. $r]$ is larger than all elements in $A[p . . q]$.
- Conquer: sort the two arrays $\mathrm{A}[\mathrm{p} . \mathrm{q}]$ and $\mathrm{A}[\mathrm{q}+1$.. r]
- Combine: if the divide and conquer steps are performed in place, then no further combination step is required.

Quicksort

Basic Idea: divide and conquer

- Divide the input array A[p..r] into parts A[p..q] and A[q+1 .. r], such that every element in $A[q+1$.. $r]$ is larger than all elements in $A[p . . q]$.
- Conquer: sort the two arrays $\mathrm{A}[\mathrm{p} . \mathrm{q}]$ and $\mathrm{A}[\mathrm{q}+1$.. r]
- Combine: if the divide and conquer steps are performed in place, then no further combination step is required.

Partitioning using a pivot element:

- all elements that are smaller than the pivot element should go into the "smaller" partition (A[p..q])
- all elements that are larger than the pivot element should go into the "larger" partition (A[q+1..r])

Partitioning the Array (Hoare's Algorithm)

```
Partition (A:Array[p..r]) : Integer \{
    // \(x\) is the pivot (chosen as first element):
    \(x:=A[p] ;\)
    // partitions grow towards each other
    \(\mathrm{i}:=\mathrm{p}-1 ; \mathrm{j}:=\mathrm{r}+1\); // (partition boundaries)
    while true do \{ // i<j: partitions haven't met yet
    // leave large elements in right partition
    do \(\{\mathrm{j}:=\mathrm{j}-1\); \(\}\) while \(\mathrm{A}[\mathrm{j}]>\mathrm{x}\);
    // leave small elements in left partition
    do \(\{i:=i+1 ;\}\) while \(A[i]<x\) :
    // swap the two first "wrong" elements
    if \(\mathrm{i}<\mathrm{j}\)
    then exchange \(A[i]\) and \(A[j]\);
    else return j;
    \}
\}
```


Time Complexity of Partition

How many statements are executed by the nested while loops?

Time Complexity of Partition

How many statements are executed by the nested while loops?

- monitor increments/decrements of i and j
- after $n:=r-p$ increments/decrements, i and j have the same value
$\Rightarrow \Theta(n)$ comparisons with the pivot
$\Rightarrow O(n)$ element exchanges
Hence: $T_{\text {Part }}(n) \in \Theta(n)$

Implementation of QuickSort

QuickSort (A:Array[p..r])
$\{$
if $p>=r$ then return;
// only proceed, if A has at least 2 elements:
q := Partition (A);
QuickSort (A[p..q]);
QuickSort (A[q+1..r]);
\}

Homework:

- prove correctness of Partition
- prove correctness of QuickSort

Time Complexity of QuickSort

Best Case:

- assume that all partitions are split exactly into two halves:

$$
T_{\mathrm{QS}}^{\text {best }}(n)=2 T_{\mathrm{QS}}^{\text {best }}\left(\frac{n}{2}\right)+\Theta(n)
$$

- analogous to MergeSort:

$$
T_{\mathrm{QS}}^{\text {best }}(n) \in \Theta(n \log n)
$$

Time Complexity of QuickSort

Best Case:

- assume that all partitions are split exactly into two halves:

$$
T_{\mathrm{QS}}^{\text {best }}(n)=2 T_{\mathrm{QS}}^{\text {best }}\left(\frac{n}{2}\right)+\Theta(n)
$$

- analogous to MergeSort:

$$
T_{\mathrm{QS}}^{\text {best }}(n) \in \Theta(n \log n)
$$

Worst Case:

- Partition will always produce one partition with only 1 element:

$$
\begin{aligned}
T_{Q S}^{\text {worst }}(n) & =T_{Q S}^{\text {worst }}(n-1)+T_{Q S}^{\text {worst }}(1)+\Theta(n) \\
& =T_{Q S}^{\text {worst }}(n-1)+\Theta(n)=T_{Q S}^{\text {worst }}(n-2)+\Theta(n-1)+\Theta(n) \\
& =\ldots=\Theta(1)+\ldots+\Theta(n-1)+\Theta(n) \in \Theta\left(n^{2}\right)
\end{aligned}
$$

Time Complexity of QuickSort - Special Cases?

What happens if:

- A is already sorted?

Time Complexity of QuickSort - Special Cases?

What happens if:

- A is already sorted?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$

Time Complexity of QuickSort - Special Cases?

What happens if:

- A is already sorted?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- A is sorted in reverse order?

Time Complexity of QuickSort - Special Cases?

What happens if:

- A is already sorted?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- A is sorted in reverse order?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$

Time Complexity of QuickSort - Special Cases?

What happens if:

- A is already sorted?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- A is sorted in reverse order?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- one partition has always at most a elements (for a fixed a)?

Time Complexity of QuickSort - Special Cases?

What happens if:

- A is already sorted?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- A is sorted in reverse order?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- one partition has always at most a elements (for a fixed a)? \rightarrow same complexity as $a=1 \Rightarrow \Theta\left(n^{2}\right)$

Time Complexity of QuickSort - Special Cases?

What happens if:

- A is already sorted?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- A is sorted in reverse order?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- one partition has always at most a elements (for a fixed a)? \rightarrow same complexity as $a=1 \Rightarrow \Theta\left(n^{2}\right)$
- partition sizes are always $n(1-a)$ and na with $0<a<1$?

Time Complexity of QuickSort - Special Cases?

What happens if:

- A is already sorted?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- A is sorted in reverse order?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- one partition has always at most a elements (for a fixed a)? \rightarrow same complexity as $a=1 \Rightarrow \Theta\left(n^{2}\right)$
- partition sizes are always $n(1-a)$ and na with $0<a<1$? \rightarrow same complexity as best case $\Rightarrow \Theta(n \log n)$

Time Complexity of QuickSort - Special Cases?

What happens if:

- A is already sorted?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- A is sorted in reverse order?
\rightarrow partition sizes always 1 and $n-1 \Rightarrow \Theta\left(n^{2}\right)$
- one partition has always at most a elements (for a fixed a)? \rightarrow same complexity as $a=1 \Rightarrow \Theta\left(n^{2}\right)$
- partition sizes are always $n(1-a)$ and na with $0<a<1$? \rightarrow same complexity as best case $\Rightarrow \Theta(n \log n)$

Questions:

- What happens in the "usual" case?
- Can we force the best case?

Randomized QuickSort

```
RandPartition ( A: Array [p..r] ): Integer {
    // choose random integer i between p and r
    i := rand(p,r);
    // make A[i] the (new) Pivot element:
    exchange A[i] and A[p];
    // call Partition with new pivot element
    q:= Partition (A);
    return q;
}
```

RandQuickSort (A:Array [p..r]) \{
if $p>=r$ then return;
q := RandPartition(A);
RandQuickSort (A[p...q]);
RandQuickSort (A[q+1 ..r]);
\}

Time Complexity of RandQuickSort

Best/Worst-case complexity?

Time Complexity of RandQuickSort

Best/Worst-case complexity?

- RandQuickSort may still produce the worst (or best) partition in each step
- worst case: $\Theta\left(n^{2}\right)$
- best case: $\Theta(n \log n)$

Time Complexity of RandQuickSort

Best/Worst-case complexity?

- RandQuickSort may still produce the worst (or best) partition in each step
- worst case: $\Theta\left(n^{2}\right)$
- best case: $\Theta(n \log n)$

However:

- it is not determined which input sequence (sorted order, reverse order) will lead to worst case behavior (or best case behavior);
- any input sequence might lead to the worst case or the best case, depending on the random choice of pivot elements.
Thus: only the average-case complexity is of interest!

Average Case Complexity of RandQuickSort

Assumptions:

- we compute $\bar{T}_{\mathrm{RQS}}(A)$,
i.e., the expected run time of RandQuickSort for a given input A
- rand (p, r) will return uniformly distributed random numbers (all pivot elements have the same probability)
- all elements of A have different size: $\mathrm{A}[\mathrm{i}] \neq \mathrm{A}[\mathrm{j}]$

Average Case Complexity of RandQuickSort

Assumptions:

- we compute $\bar{T}_{\mathrm{RQS}}(A)$,
i.e., the expected run time of RandQuickSort for a given input A
- $\operatorname{rand}(p, r)$ will return uniformly distributed random numbers (all pivot elements have the same probability)
- all elements of A have different size: $A[i] \neq A[j]$

Basic Idea:

- only count number of comparisons between elements of A
- let z_{i} be the i-th smallest element in A
- define

$$
X_{i j}= \begin{cases}1 & z_{i} \text { is compared to } z_{j} \\ 0 & \text { otherwise }\end{cases}
$$

- random variable $T_{\mathrm{RQS}}(A)=\sum_{i<j} X_{i j}$

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

$$
\bar{T}_{\mathrm{RQS}}(A)=\mathrm{E}\left[\sum_{i<j} X_{i j}\right]
$$

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

$$
\begin{aligned}
\bar{T}_{\mathrm{RQS}}(A) & =\mathrm{E}\left[\sum_{i<j} X_{i j}\right] \\
& =\sum_{i<j} \mathrm{E}\left[X_{i j}\right]
\end{aligned}
$$

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

$$
\begin{aligned}
\bar{T}_{\mathrm{RQS}}(A) & =\mathrm{E}\left[\sum_{i<j} X_{i j}\right] \\
& =\sum_{i<j} \mathrm{E}\left[X_{i j}\right] \\
& =\sum_{i<j} \operatorname{Pr}\left[z_{i} \text { is compared to } z_{j}\right]
\end{aligned}
$$

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

$$
\begin{aligned}
\bar{T}_{\mathrm{RQS}}(A) & =\mathrm{E}\left[\sum_{i<j} X_{i j}\right] \\
& =\sum_{i<j} \mathrm{E}\left[X_{i j}\right] \\
& =\sum_{i<j} \operatorname{Pr}\left[z_{i} \text { is compared to } z_{j}\right]
\end{aligned}
$$

- suppose an element between z_{i} and z_{j} is chosen as pivot before z_{i} or z_{j} are chosen as pivots; then z_{i} and z_{j} are never compared

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

$$
\begin{aligned}
\bar{T}_{\mathrm{RQS}}(A) & =\mathrm{E}\left[\sum_{i<j} X_{i j}\right] \\
& =\sum_{i<j} \mathrm{E}\left[X_{i j}\right] \\
& =\sum_{i<j} \operatorname{Pr}\left[z_{i} \text { is compared to } z_{j}\right]
\end{aligned}
$$

- suppose an element between z_{i} and z_{j} is chosen as pivot before z_{i} or z_{j} are chosen as pivots; then z_{i} and z_{j} are never compared Λ^{\bullet} if either z_{i} or z_{j} is chosen as the first pivot in the range z_{i}, \ldots, z_{j}, then z_{i} will be compared to z_{j}

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

$$
\begin{aligned}
\bar{T}_{\mathrm{RQS}}(A) & =\mathrm{E}\left[\sum_{i<j} X_{i j}\right] \\
& =\sum_{i<j} \mathrm{E}\left[X_{i j}\right] \\
& =\sum_{i<j} \operatorname{Pr}\left[z_{i} \text { is compared to } z_{j}\right]
\end{aligned}
$$

- suppose an element between z_{i} and z_{j} is chosen as pivot before z_{i} or z_{j} are chosen as pivots; then z_{i} and z_{j} are never compared
- if either z_{i} or z_{j} is chosen as the first pivot in the range z_{i}, \ldots, z_{j}, then z_{i} will be compared to z_{j}
- this happens with probability

$$
\frac{2}{j-i+1}
$$

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

$$
\bar{T}_{\mathrm{RQS}}(A)=\sum_{i=1}^{n-1} \sum_{\substack{j=i+1}}^{n} \frac{1}{j-i+1}
$$

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

$$
\begin{aligned}
\bar{T}_{\mathrm{RQS}}(A) & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{12}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{1}{k}
\end{aligned}
$$

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

$$
\begin{aligned}
\bar{T}_{\mathrm{RQS}}(A) & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{1}{k} \\
& \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}
\end{aligned}
$$

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

$$
\begin{aligned}
& \bar{T}_{\mathrm{RQS}}(A)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} \\
&=\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{1}{k} \\
& n<2\left(\sum_{i=1}^{n}\right)_{i=1}^{n} \frac{1}{k} \\
&=2 n H_{n}
\end{aligned}
$$

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

$$
\begin{aligned}
\bar{T}_{\mathrm{RQS}}(A) & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{1}{k} \\
& \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k} \\
& =2 n H_{n} \\
& =O(n \log n)
\end{aligned}
$$

Part III

Outlook: Optimality of Comparison Sorts

Are Mergesort and Quicksort optimal?

Definition

Comparison sorts are sorting algorithms that use only comparisons (i.e. tests as $\leq,=,>, \ldots$) to determine the relative order of the elements.

Examples:

- InsertSort, BubbleSort
- MergeSort, (Randomised) Quicksort

Question:

Is $T(n) \in \Theta(n \log n)$ the best we can get (in the worst/average case)?

Decision Trees

Definition

A decision tree is a binary tree in which each internal node is annotated by a comparison of two elements.
The leaves of the decision tree are annotated by the respective permutations that will put an input sequence into sorted order.

Decision Trees - Properties

Each comparison sort can be represented by a decision tree:

- a path through the tree represents a sequence of comparisons
- sequence of comparisons depends on results of comparisons
- can be pretty complicated for Mergesort, Quicksort, ...

A decision tree can be used as a comparison sort:

- if every possible permutation is annotated to at least one leaf of the tree!
- if (as a result) the decision tree has at least n ! (distinct) leaves.

A Lower Complexity Bound for Comparison Sorts

- A binary tree of height h (h the length of the longest path) has at most 2^{h} leaves.
- To sort n elements, the decision tree needs n ! leaves.

Theorem

Any decision tree that sorts n elements has height $\Omega(n \log n)$.

Proof:

- h comparisons in the worst case are equivalent to a decision tree of height h
- with h comparisons, we can sort n elements (at best), if

$$
n!\leq 2^{h} \Leftrightarrow h \geq \log (n!) \in \underline{\Omega}(n \log n)
$$

- because:

$$
\left.h \geq \log (n!) \geq \log (n \sqrt{\boxed{2}})=\frac{n}{2} \log n\right)
$$

Optimality of Mergesort and Quicksort

Corollaries:

- MergeSort is an optimal comparison sort in the worst/average case
- QuickSort is an optimal comparison sort in the average case

Consequences and Alternatives:

- comparison sorts can be faster than MergeSort, but only by a constant factor
- comparison sorts can not be asymptotically faster
- sorting algorithms might be faster, if they can exploit additional information on the size of elements
- examples: BucketSort, CountingSort, RadixSort

Part IV

Bucket Sort - Sorting Beyond "Comparison Only"

Bucket Sort

Basic Ideas and Assumptions:

- pre-sort numbers in buckets that contain all numbers within a certain interval
- hope (assume) that input elements are evenly distributed and thus uniformly distributed to buckets
- sort buckets and concatenate them

Requires "Buckets":

- can hold arbitrary numbers of elements
- can insert elements efficiently: in $O(1)$ time
- can concatenate buckets efficiently: in $O(1)$ time
- remark: linked lists will do

Implementation of BucketSort

BucketSort (A:Array[1..n]) \{
Create Array B[0..n-1] of Buckets; // assume all Buckets $\mathrm{B}[i]$ are empty at first
for i from 1 to n do \{ insert $A[i]$ into Bucket $B[f l o o r(n * A[i])]$;
\}
for i from 0 to $\mathrm{n}-1$ do \{
sort Bucket B[i] ;
\}
concatenate Buckets $\mathrm{B}[0], \mathrm{B}[1], \ldots, \mathrm{B}[\mathrm{n}-1]$ into A
\}

Number of Operations of BucketSort

Operations:

- n operations to distribute n elements to buckets
- plus effort to sort all buckets

Number of Operations of BucketSort

Operations:

- n operations to distribute n elements to buckets
- plus effort to sort all buckets

Best Case:

- if each bucket gets 1 element, then $\Theta(n)$ operations are required

Number of Operations of BucketSort

Operations:

- n operations to distribute n elements to buckets
- plus effort to sort all buckets

Best Case:

- if each bucket gets 1 element, then $\Theta(n)$ operations are required

Worst Case:

- if one bucket gets all elements, then $T(n)$ is determined by the sorting algorithm for the buckets

Bucketsort - Average Case Analysis

- probability that bucket i contains k elements:

$$
P\left(n_{i}=k\right)=\binom{n}{k}\left(\frac{1}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{n-k}
$$

- expected mean and variance for such a distribution:

$$
E\left[n_{i}\right]=n \cdot \frac{1}{n}=1 \quad \operatorname{Var}\left[n_{i}\right]=n \cdot \frac{1}{n} \underline{\left(1-\frac{1}{n}\right)}=\left(1-\frac{1}{n}\right)
$$

- InsertionSort for buckets $\Rightarrow \leq c n^{2} \in O\left(n_{i}^{2}\right)$ operations per bucket
- expected operations to sort one bucket:

$$
\bar{T}\left(n_{i}\right) \leq \sum_{k=0}^{n-1} P \underline{P\left(n_{i}=k\right)} \cdot\left(k^{2}\right)=c E\left[n_{i}^{2}\right]
$$

Bucketsort - Average Case Analysis (2)

- theorem from statistics:

$$
E\left[X^{2}\right]=E[X]^{2}+\operatorname{Var}(X)
$$

- expected operations to sort one bucket:

$$
\overline{\bar{T}}\left(n_{i}\right) \leq c E\left[n_{i}^{2}\right]=\underline{c}\left(E\left[n_{i}\right]^{2}+\operatorname{Var}\left[n_{i}\right]\right)=c\left(1^{(2)}+1-\frac{1}{n}\right) \in \Theta(1)
$$

- expected operations to sort all buckets:

$$
\bar{T}(n)=\sum_{i=0}^{n-1} \bar{T}\left(n_{i}\right) \leq c \sum_{i=0}^{n-1}\left(2-\frac{1}{n}\right) \in \Theta(n)
$$

(note: expected value of the sum is the sum of expected values)

